Journal of Organometallic Chemistry, 193 (1980) 207–212 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

WISMUT(I)-CHLORID, BiCl, ALS KOMPLEXLIGAND: DARSTELLUNG UND STRUKTUR VON $[(C_5H_5(CO)_2Mn)_2BiCl]_2$

JOACHIM VON SEYERL und GOTTFRIED HUTTNER *

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie der Universität Konstanz, Postfach 5560, D-7750 Konstanz (West Germany)

(Eingegangen den 18. Februar 1980)

Summary

BiCl₃ undergoes partial dehalogenation when treated with $C_5H_5(CO)_2MnTHF/THF$. The resulting complex has the composition $[C_5H_5(CO)_2Mn]_2BiCl$; in the solid state it forms dimers with an unsymmetrical Bi₂Cl₂-bridging moiety. Synthesis, properties and X-ray structure analysis are described.

Zusammenfassung

BiCl₃ lässt sich mit $C_5H_5(CO)_2MnTHF/THF$ partiell enthalogenieren. Der dabei entstehende Komplex der Zusammensetzung $[C_5H_5(CO)_2Mn]_2BiCl$ liegt im Kristall als Dimeres mit einer unsymmetrischen Bi₂Cl₂-Brückeneinheit vor. Synthese, Eigenschaften und Röntgenstrukturanalyse werden beschrieben.

Die Darstellung niederwertiger Wismuthalogenide gelingt durch Auflösen von metallischem Wismut in geschmolzenem $BiCl_3$ [1]. Mehrere Arbeiten zeigen, dass in verschiedenen Salzschmelzen definierte niedere Wertigkeiten des Wismuts vorliegen [2]. Die Darstellung eines isolierten kovalenten niederwertigen Wismuthalogenids gelang bisher jedoch nicht.

Durch Enthalogenierung von $BiCl_3$ mittels $C_5H_5(CO)_2MnTHF/THF$, konnte der Komplex I erhalten werden.

$$C_5H_5(CO)_2MnTHF + BiCl_3 \xrightarrow{THF} [(C_5H_5(CO)_2Mn)_2BiCl]_2$$
(I)

Während analoge Enthalogenierungsreaktionen mit L_nMTHF/THF und AsCl₃ zu monomeren Arsiniden-Komplexen des Typs ClAs[L_nM]₂ (L_nM =

^{*} Korrespondenz-Autor.

 $(CO)_5Cr, C_5H_5(CO)_2Mn$) mit trigonal planar koordiniertem Arsen führen [3], sind im Kristall von I jeweils zwei Bismutinidenkomplex-Einheiten ClBi[Mn- $(CO)_2C_5H_5$]₂ über unsymmetrische Chlorbrücken miteinander zu Dimeren verknüpft.

Präparative Ergebnisse

Vereinigt man eine Lösung von $C_5H_5(CO)_2MnTHF$ mit einer äquimolaren Menge BiCl₃ in THF, so entsteht bei sofortigem Abziehen der Reaktionsmischung ein intensiv grün gefärbter Rückstand. Nach Aufarbeitung dieses Rückstands durch Chromatographie kann der Komplex I analysenrein erhalten werden.

Die intensiv grün gefärbten Lösungen von I in Toluol bzw. Methylenchlorid zeigen im sichtbaren Bereich des Elektronenspektrums zwei Banden bei ν_1 16260 und ν_2 23250 cm⁻¹. Die Extintionskoeffizienten liegen bei 17500 (ν_1) und 20390 (ν_2) l mol⁻¹ cm⁻¹.

Ähnlich charakteristische UV-Absorptionen findet man bei Übergangsmetallkomplexen $[L_nM]_2ER$ $(L_nM = (CO)_5Cr, (CO)_5W, C_5H_5(CO)_2Mn, E = P, As, Sb; R = Ph, Cl) [3,4], die trigonal planar koordinierte Phosphor-, Arsen- oder Anti$ mon-Atome enthalten.

Das IR-Spektrum mit vier Banden bei 1984m, 1947s, 1926s und 1905(sh) cm⁻¹ * gibt einen Hinweis auf das Vorliegen eines Rotameriegleichgewichts von mindestens zwei $C_5H_5(CO)_2Mn$ -Einheiten in Lösung. Es lässt sich ebenfalls gut mit den für die Komplexe $[L_nM]_2ER$ gefundenen IR-Absorptionen vergleichen [4].

Im ¹H-NMR-Spektrum wird nur ein Signal bei 5.05 ppm (CD_2Cl_2 , ext. TMS) beobachtet, das den Protonen der C_5H_5 -Gruppen zugeordnet werden muss.

Während die beobachteten spektroskopischen Daten also durchaus mit dem Vorliegen eines monomeren Bismutiniden-Komplexes $ClBi[C_5H_5(CO)_2Mn]_2$ im Einklang stehen, das ein trigonal planar koordiniertes Wismutatom als Brückenliganden enthalten sollte, zeigt eine an einem Kristall der Verbindung I durchgeführte Röntgenstrukturanalyse das Vorliegen eines Bi₂Cl₂-Brückenliganden mit verzerrt tetraedrisch koordinierten Wismutatomen.

Strukturanalytische Ergebnisse

Durch Abkühlen einer CH₂Cl₂-Lösung von I konnten Kristalle erhalten werden, die sich zur Röntgenstrukturanalyse eigneten. I kristallisiert monoklin in der Raumgruppe $P2_1/c$. Die Zelldimensionen betragen: a 1157.3, b 1330.3, c 1152.8 pm, β 116.7°, Z = 4. Die Messung wurde bei -80°C durchgeführt. Die Lösung erfolgte mit konventionellen Methoden ** ($R_1 = 0.072$), zur Verfeinerung wurden 1703 unabhängige Reflexe verwendet.

Eine Ansicht des Komplexes I gibt Fig. 1. Die Tabellen 1 und 2 enthalten

^{*} CaF₂-Optik, CH₂Cl₂, m = mittel, s = stark, (sh) = Schulter.

^{**} Diffraktometer: Syntex P3, ω -scan, $\Delta \omega = 1^{\circ}$, $1 \le \dot{\omega} \le 29.3^{\circ} \text{ min}^{-1}$, $2.5 \le 2\theta \le 40^{\circ}$, λ Mo = 71.069 pm, Graphitmonochromator Lösung: Syntex EXTL.

Fig. 1. Ansicht des Komplexes I.

TABELLE 1

ATOM-PARAMETER^a

Atome	x/a	y/b	2/c	B (A ²)	
Bi	0.1510(1)	0.1200(1)	0.0664(1)		
Mn(1)	0.0381(5)	0.2836(4)	0.0236(4)		
Mn(2)	0.3707(5)	0.0483(4)	0.1499(4)		
Cl(1)	-0.0106(8)	-0.0002(7)	0.1578(6)		
C(11)	0.140(4)	0.323(2)	0.184(3)		
0(11)	0.212(3)	0.348(2)	0.288(2)		
C(12)	0.145(3)	0.329(2)	0.031(3)		
C(12)	0.208(3)	0.368(2)	-0.075(3)		
C(21)	0.338(3)	0.020(3)	0.007(3)		
0(21)	0.322(2)	-0.069(2)	-0.083(2)		
C(22)	0.419(4)	0.162(3)	0.088(3)		
O(22)	0.454(3)	0.222(2)	0.048(2)		
C(31)	-0.120(4)	0.356(3)	-0.134(4)	3.7(8)	
C(32)	-0.144(5)	0.250(3)	-0.133(4)	5.0(9)	
C(33)	-0.141(6)	0.246(4)	0.016(4)	6.2(11)	
C(34)	-0.121(5)	0.356(4)	0.039(4)	5.4(10)	
C(35)	-0.113(7)	0.406(5)	-0.049(6)	9.0(17)	
C(41)	0,442(4)	0.080(3)	0.354(3)	3.1(7)	
C(42)	0.552(4)	0.066(3)	0.323(4)	4.3(9)	
C(43)	0.538(4)	0.032(3)	0.270(3)	3.0(7)	
C(44)	0.437(4)	0.083(3)	0.270(3)	3.7(8)	
C(45)	0.372(4)	0.015(3)	0.320(3)	4.0(8)	

^a C(31)-C(25) entspricht Cyclopentadienyl-Rest I, C(41)-C(45) entspricht Cyclopentadienyl-Rest II.

Atom	B ₁₁	B ₂₂	B33	B ₁₂	B ₁₃	B ₂₃
Bi	0.4(1)	3.0(1)	1.5(1)	0.6(1)	-0.3(1)	0.0(1)
Mn(1)	0.7(2)	3.2(2)	1.2(2)	0.4(2)	-0.2(2)	0.2(2)
Mn(2)	0.4(2)	3.4(2)	1.4(2)	0,5(2)	-0.4(2)	0.1(2)
Cl(1)	0.9(4)	3.9(4)	1.4(3)	0.2(3)	0.0(2)	0.6(3)
C(11)	2(1)	1(1)	3(1)	0(1)	1(1)	1(1)
0(11)	3(1)	4(1)	3(1)	-1(1)	1(1)	0(1)
C(12)	1(1)	4(1)	3(1)	1(1)	1(1)	1(1)
0(12)	4(1)	5(1)	7(2)	1(1)	2(1)	3(1)
C(21)	1(1)	4(2)	1(1)	-1(1)	0(1)	0(1)
0(21)	1(1)	3(1)	3(1)	0(1)	1(1)	-1(1)
C(22)	2(2)	5(2)	3(2)	0(2)	1(1)	-1(1)
0(22)	4(2)	5(2)	4(1)	1(1)	1(1)	1(1)

ANISOTROPE TEMPERATURFAKTOREN a

^a Der anisotrope Temperatufaktor ist definiert als $T = \exp[-1/4(h^2a^{\star 2}B_{11} + ... + 2hka^{\star}b^{\star}B_{12} + ...)]$, B in Å².

die Lageparameter und anisotropen Temperaturfaktoren, die Tabelle 3 die wichtigsten Abstände und Winkel.

Diskussion

Das im Kristallgitter gefundene Molekül ist inversionssymmetrisch; das Inversionszentrum liegt im Schwerpunkt des durch die Wismut- und Chloroatome aufgespannten Vierecks. Die zentrale Bi_2Cl_2 -Einheit wird durch vier $C_5H_5(CO)_2Mn$ -Gruppen komplex gebunden, die Wismutatome besitzen dadurch idealisiert tetraedrische Umgebung.

Der mittlere Mn—Bi-Abstand von 247 pm ist bedeutend kürzer als die Summe der Kovalenzradien erwarten liesse (d_{Bi-Mn} 340 pm, r_{Bi} 195 pm, r_{Mn} 145 pm) [5]. Der Vergleich mit dem Bi—Cr-Abstand von 270.5 pm in (CO)₅CrBiPh₃ [6], der um 23 pm länger ist als die in I gefundene Bi—Mn-Bindungslänge, zeigt, dass trotz der Halogenbrücken, die in I den Grad der koordinativen Ungesättigtheit des Wismuts gegenüber einem hypothetischen monomeren Bismutiniden-Komplex ClBi[Mn(CO)₂C₅H₅]₂ senken, der Ausgleich des Elektronendefizits am Wismut ähnlich wie in Phosphiniden-, Arsiniden- und Stibiniden-Komplexen [4] ganz wesentlich durch $d\pi$ — $p\pi$ -Rückbindung mit den freien Elektronenpaaren der Manganatome erfolgen muss.

TABELLE 3 ABSTÄNDE (pm) UND WINKEL (Grad)

	······································			
Bi-Mn(1)	247.1(5)	Mn(1)—Bi—Mn(2)	141.0(2)	
Bi—Mn(2)	246.7(6)	Mn(1)—Bi—Cl	103.7(2)	
Bi-Cl	289.5(8)	Mn(2)—Bi—Cl	105.8(2)	
Bi-Cl'	279.8(9)	Mn(1)-Bi-Cl'	103.4(2)	
Mn-CCO	178.3(30)	Mn(2)—Bi—Cl'	107.7(2)	
Mn-C _{Cp}	215.1(60)	Cl—Bi—Cl′	76.7(2)	

TABELLE 2

Die Bi-Cl-Bindungslängen sind mit 279.8 und 289.5 pm asymmetrisch und um 5 bzw. 15 pm länger als die BiCl-Abstände in $(C_5H_5)_2$ FeBiCl₄ [7]. Im Komplex $(C_5H_5)_2$ FeBiCl₄, der eine unendliche über zwei Cl-Brücken verknüpfte BiCl₄-Kette besitzt, wurden Bi-Cl-Bindungslängen von 250-252 pm für endständige und 270-275 pm für verbrückende Chloratome gefunden [7]. Für BiCl₃ in der Gasphase wurde ein mittlerer BiCl-Abstand von 248 pm beobachtet [8].

Die durch Enthalogenierung von AsCl₃ mittles L_nMTHF/THF erhaltenen Chlorarsinidenkomplexe ClAs $[L_nM]_2$ ($L_nM = (CO)_5Cr, C_5H_5(CO)_2Mn$) [3], die einen trigonal planaren Chlorarsandiyl-Brückenliganden enthalten, besitzen ein stark positiviertes Arsenatom, das zur Adduktbildung mit Lewisbasen neigt [9]. Diese Adduktbildungstendenz konnte auch für Halogenidionen als Elektronendonoren bestätigt werden [10].

Die Darstellung eines monomeren Chlorbismutidinenkomplexes $ClBi[C_5H_5-(CO)_2Mn]_2$ gelingt offenbar aufgrund der Lewis-Basizität des an das Wismutatom gebundenen Chloratoms und hohen Akzeptorpotentials des Wismutatoms in einem hypothetischen monomeren Bismutinidenkomplex nicht. Im Festkörper wird deshalb ein über asymmetrische Cl-Brücken verknüpftes Bi_2Cl_2 -Fragment beobachtet, das durch vier $C_5H_5(CO)_2Mn$ -Einheiten komplex stabilisiert wird. Das Vorliegen einer monomeren, trigonal planaren Form des Komplexes I im Lösungsgleichgewicht kann jedoch nicht ausgeschlossen werden.

Experimenteller Teil

Sämtliche Arbeiten wurden unter N_2 als Schutzgas mit frisch destillierten und absolutierten Reagentien durchgeführt. Zur Filtration diente Kieselgel, Merck, 0.063–0.2 mm.

¹H-NMR-Spektren: Bruker-WP-80-CW-Gerät, 30°C. IR-Spektren: Zeiss IMR 40, CaF₂-Küvetten.

$ClBi[C_5H_5(CO)_2Mn]_2$

5 g (24 mmol) $C_5H_5(CO)_3Mn$ werden in 400 ml THF 2.5 Std. bestrahlt. Die entstandene Lösung von $C_5H_5(CO)_2MnTHF$ (70% Ausbeute) wird mit einer Lösung von 5.5 g (17.5 mmol) BiCl₃ in 20 ml THF vereinigt und unter kräftigem Rühren bei 20°C abgezogen. Nicht umgesetztes $C_5H_5(CO)_3Mn$ kann mit 100 ml Pentan aus dem erhaltenen Rückstand ausgewaschen werden. Den Komplex ClBi[$C_5H_5(CO)_2Mn$]₂ erhält man durch Aufnehmen in CH₂Cl₂, Filtrieren über Silicagel (6 cm) und Umkristallisieren aus CH₂Cl₂ als metallisch glänzende, schwarze Kristalle. Ausbeute: 1.2 g (24% bez. auf $C_5H_5(CO)_2Mn$ -THF). FP: >200°C (Zers.), Gef. C, 28.05, H, 1.60, Mn 19.70. $C_{14}H_{10}O_4$ ClBi-Mn₂, Molmasse 596.55 (monomer), ber.: C, 28.19, H, 1.69, Mn 18.40%.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn, Bad Godesberg, und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, Frankfurt, für die Unterstützung dieser Arbeit.

Literatur

- 1 F.A. Cotton und G. Wilkinson, Anorganische Chemie, Verlag Chemie, Weinheim 1974.
- 2 N.J. Bjerrum, C.R. Boston und G.P. Smith, Inorg. Chem., 6 (1967) 1162; C.R. Boston, ibid., 9 (1970) 389; R.A. Lynde und J.D. Corbett, ibid., 10 (1971) 1746.
- 3 J. v. Seyerl, U. Moering, A. Wagner, A. Frank und G. Huttner, Angew. Chem., 90 (1978) 912; Angew. Chem. Int. Ed. Engl., 17 (1978) 844.
- 4 G. Huttner, J. v. Seyerl, M. Marsili und H.-G. Schmid, Angew. Chem., 87 (1975) 455; Angew. Chem. Int. Ed. Engl., 14 (1975) 434; G. Huttner, H.-D. Müller, A. Frank und H. Lorenz, Angew. Chem., 16 (1975) 597; Angew. Chem. Int. Ed. Engl., 14 (1975) 572; G. Huttner und H.-G. Schmid, Angew. Chem., 87 (1975) 454; Angew. Chem. Int. Ed. Engl., 14 (1975) 433; J.v. Seyerl und G. Huttner, Angew. Chem., 90 (1978) 911; Angew. Chem. Int. Ed. Engl., 17 (1978) 843.
- 5 L. Pauling, Die Natur der chemischen Bindung, Verlag Chemie, Weinheim 1974.
- 6 A.J. Carty und N.J. Taylor, J. Chem. Soc. Chem. Commun., (1979) 639.
- 7 N.J. Mammano, A. Zalkin, A. Landers und A.L. Rheingold, Inorg. Chem., 16 (1977) 297.
- 8 H.A. Skinner und L.E. Sutton, Trans. Farad. Soc., 36 (1940) 681.
- 9 J. v. Seyerl und G. Huttner, Angew. Chem., 91 (1979) 244; Angew. Chem. Int. Ed. Engl., 18 (1979) 233.
- 10 Dissertation J. v. Seyerl, TU München 1979.